首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26916篇
  免费   805篇
  国内免费   228篇
化学   18001篇
晶体学   105篇
力学   641篇
综合类   1篇
数学   5350篇
物理学   3851篇
  2021年   246篇
  2020年   347篇
  2019年   314篇
  2018年   276篇
  2017年   294篇
  2016年   599篇
  2015年   621篇
  2014年   659篇
  2013年   1410篇
  2012年   1410篇
  2011年   1708篇
  2010年   952篇
  2009年   815篇
  2008年   1464篇
  2007年   1468篇
  2006年   1554篇
  2005年   1395篇
  2004年   1327篇
  2003年   1045篇
  2002年   816篇
  2001年   288篇
  2000年   241篇
  1999年   231篇
  1998年   214篇
  1997年   365篇
  1996年   323篇
  1995年   328篇
  1994年   369篇
  1993年   331篇
  1992年   300篇
  1991年   302篇
  1990年   267篇
  1989年   274篇
  1988年   252篇
  1987年   209篇
  1986年   241篇
  1985年   352篇
  1984年   371篇
  1983年   309篇
  1982年   343篇
  1981年   312篇
  1980年   336篇
  1979年   271篇
  1978年   299篇
  1977年   277篇
  1976年   223篇
  1975年   189篇
  1974年   193篇
  1973年   163篇
  1972年   110篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
91.
Multicomponent reactions are of utmost importance at generating a unique, wide, and complex chemical space. Herein we describe a novel multicomponent approach based on the combination of the isonitrile-tetrazine (4+1) cycloaddition and the Ugi four-component reaction to generate pyrazole amide derivatives. The scope of the reaction as well as mechanistic insights governing the 4H-pyrazol-4-imine tautomerization are provided. This multicomponent process provides access to a new chemical space of pyrazole amide derivatives and offers a tool for peptide modification and stapling.  相似文献   
92.
We introduce a class of single-chain nanoparticles (SCNPs) that respond to visible light (λmax=415 nm) with complete unfolding from their compact structure into linear chain analogues. The initial folding is achieved by a simple esterification reaction of the polymer backbone constituted of acrylic acid and polyethylene glycol carrying monomer units, introducing bimane moieties, which allow for the photochemical unfolding, reversing the ester-bond formation. The compaction and the light driven unfolding proceed cleanly and are readily followed by size exclusion chromatography (SEC) and diffusion ordered NMR spectroscopy (DOSY), monitoring the change in the hydrodynamic radius (RH). Importantly, the folding reaction and the light-induced unfolding are reversible, supported by the high conversion of the photo cleavage. As the unfolding reaction occurs in aqueous systems, the system holds promise for controlling the unfolding of SCNPs in biological environments.  相似文献   
93.
Herein, we report on the preparation of liquid dimeric lanthanide(III)-containing compounds. Starting from the design of dimeric solids, we demonstrate that by tuning of anion and cation structures we can lower the melting points below room temperature, whilst maintaining the dimeric structure. Magnetic measurements could establish the spin-spin interactions of the neighboring lanthanide(III) ions in the liquid state at low temperatures, and matched the interactions of the analogous crystalline solid compounds.  相似文献   
94.
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives ( 1 and 2 ) as subunits of 8-AGNR , with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR . The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2 V−1 s−1 for the 8-AGNR .  相似文献   
95.
On-surface synthesis is at the verge of emerging as the method of choice for the generation and visualization of unstable or unconventional molecules, which could not be obtained via traditional synthetic methods. A case in point is the on-surface synthesis of the structurally elusive cyclotriphosphazene (P3N3), an inorganic aromatic analogue of benzene. Here, we report the preparation of this fleetingly existing species on Cu(111) and Au(111) surfaces at 5.2 K through molecular manipulation with unprecedented precision, i.e., voltage pulse-induced sextuple dechlorination of an ultra-small (about 6 Å) hexachlorophosphazene P3N3Cl6 precursor by the tip of a scanning probe microscope. Real-space atomic-level imaging of cyclotriphosphazene reveals its planar D3h-symmetric ring structure. Furthermore, this demasking strategy has been expanded to generate cyclotriphosphazene from a hexaazide precursor P3N21 via a different stimulation method (photolysis) for complementary measurements by matrix isolation infrared and ultraviolet spectroscopy.  相似文献   
96.
Dithienopyrazines are only scarcely used as building blocks in organic electronic materials. Here, we report efficient preparation and investigation of syn- and anti-dithienopyrazines, which were functionalized with triaraylamine units to provide different series of donor-acceptor-donor-type materials. The characterization of the optoelectronic properties resulted in valuable structure-property relationships and allowed for the elucidation of the influence of structural effects such as core structure (syn vs anti), type of substituents (directly arylated vs ethynylated aryl), and substitution pattern (α,α’- vs β,β’- vs fourfold substitution). Finally, first application of a dithienopyrazine derivative as model for hole-transport materials tailored for organic electronic devices has been realized.  相似文献   
97.
The electrochemical reduction of CO2 to produce sustainable fuels and chemicals has attracted great attention in recent years. It is shown that surface-modified carbons catalyze the CO2RR. This study reports a strategy to modify the surface of commercially available carbon materials by adding oxygen and nitrogen surface groups without modifying its graphitic structure. Clear differences in CO2RR activity, selectivity and the turnover frequency between the surface-modified carbons were observed, and these differences were ascribed to the nature of the surface groups chemistry and the point of zero charge (PZC). The results show that nitrogen-containing surface groups are highly selective towards the formation of CO from the electroreduction of CO2 in comparison with the oxygen-containing surface groups, and the carbon without surface groups. This demonstrates that the selectivity of carbon for CO2RR can be rationally tuned by simply altering the surface chemistry via surface functionalization.  相似文献   
98.
The adsorption of propene on neutral gold clusters is investigated in a collision cell under a few collision conditions. The adsorption reaction is studied by pressure‐dependent kinetic measurements and delayed unimolecular dissociation of the excited Aun?propene complexes. The cluster size (n=9–25) and temperature (T=90–300 K) dependence of the propene adsorption is analyzed. Strong size dependences of the absorption reaction are observed; a larger propene adsorption probability was found for gold clusters composed of an even number of atoms. Propene binding energies are estimated by comparison of the temperature‐dependent unimolecular dissociation rates with rates obtained by using statistical RRKM modeling. The Aun–propene binding energies decrease non‐monotonously with cluster size and are in the range of 1.2–0.85 eV for n=9–25. Finally, the bonding of C3H6 on Aun is qualitatively described and similarities with the absorption of CO molecules on gold clusters are discussed.  相似文献   
99.
Asymmetric transfer hydrogenation (ATH) is an important process in organic synthesis for which the Noyori‐type RuII catalysts [(arene)Ru(Tsdiamine)] are now well established and widely used. We now demonstrate for the first time the catalytic activity of the osmium analogues. X‐ray crystal structures of the 16‐electron OsII catalysts are almost identical to those of RuII. Intriguingly the precursor complex was isolated as a dichlorido complex with a monodentate amine ligand. The OsII catalysts are readily synthesised (within 1 h) and exhibit excellent enantioselectivity in ATH reactions of ketones.  相似文献   
100.
Despite the contribution of changes in pancreatic β‐cell mass to the development of all forms of diabetes mellitus, few robust approaches currently exist to monitor these changes prospectively in vivo. Although magnetic‐resonance imaging (MRI) provides a potentially useful technique, targeting MRI‐active probes to the β cell has proved challenging. Zinc ions are highly concentrated in the secretory granule, but they are relatively less abundant in the exocrine pancreas and in other tissues. We have therefore developed functional dual‐modal probes based on transition‐metal chelates capable of binding zinc. The first of these, Gd ?1 , binds ZnII directly by means of an amidoquinoline moiety (AQA), thus causing a large ratiometric Stokes shift in the fluorescence from λem=410 to 500 nm with an increase in relaxivity from r1=4.2 up to 4.9 mM ?1 s?1. The probe is efficiently accumulated into secretory granules in β‐cell‐derived lines and isolated islets, but more poorly by non‐endocrine cells, and leads to a reduction in T1 in human islets. In vivo murine studies of Gd ?1 have shown accumulation of the probe in the pancreas with increased signal intensity over 140 minutes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号